シールド工事用標準セグメント

標準型鋼製セグメント

1 設計条件

(1) セグメントリング形状及び寸法

セグメント 鋼板材料	NS 1 SM490A	
分割数 A型セグメント B型セグメント K型セグメント K型セグメントの継手角度	80 80 40	分割 (°) 2個 (°) 2個 (°) 1個 (°)
セグメント外径(スキンプレート厚を含む) セグメント内径 セグメント幅 仕上り内径 二次覆工厚 リング曲げ剛性の有効率	1150 247.000	(mm) (mm) (mm)
セグメント主桁高さ セグメント主桁厚さ		(mm) (mm)
縦リプ高さ 縦リプ厚さ 縦リプ幅 縦リプ中心角	8	(mm) (mm) (mm) (°)
スキンプレート厚	3	(mm)
セグメント継ボルト呼び径 セグメント継ボルト本数 セグメント継ボルトピッチ(dl'') セグメント継ボルトへりあき(el) セグメント継ボルト長さ セグメント継ボルト重量 セグメント継ボルト有効断面積 セグメント継ボルト軸断面積	0 30 0.13 1.8	4・6 (本) (mm) (mm) 40 (mm) 38 (kg) 57 (cm ²) 01 (cm ²)

(2) 荷重

土質の種類砂質土土圧の種類緩み土圧水圧の種類土水分離

土被り (GL から) 7.500 (m) 水の単位体積重量 $10.0 \text{ (kN/m}^3)$ 1.500 (m) 地下水深さ(GLから) 側方土圧係数 0.4 地盤反力係数 $40 \text{ (MN/m}^3)$ 載荷荷重 上載荷重 上載荷重 $10.0 \text{ (kN/m}^2)$ セグメント重量 (1リング当り) 270 (kg/リング) セグメント重量 (1 m 当り) 360 (kg/m)

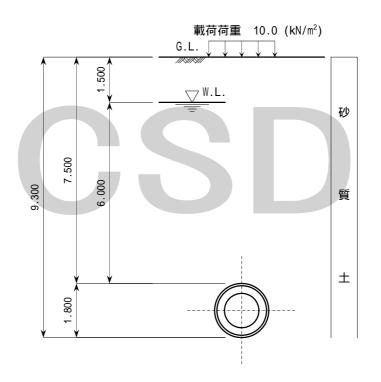
(3) シールドジャッキの推力

500 (kN/本) × 8 (本) = 4000.000 (kN/リング)

(4) 許容応力度

1) 鋼材の許容応力度

許容引張り応力度215 (N/mm²)許容圧縮応力度215 (N/mm²)許容曲げ応力度215 (N/mm²)許容せん断応力度125 (N/mm²)降伏点応力度325 (N/mm²)


2) ボルトの許容応力度

使用ボルト強度区分4・6許容引張応力度120 (N/mm²)許容せん断応力度90 (N/mm²)

(5) その他の条件

セグメント曲げ剛性有効率 モーメント割増率 0 (%)

(6) 荷重状態図

No	層厚 (m)	単位体積重量 (kN/m³)	水中 単位体積重量 '(kN/m³)	内部摩擦角 (°)	粘着力 C (kN/m²)	
1	1.500	18	8	30	0	
2	6.000	18	8	30	0	
3	0.030	18	8	30	0	
4	1.740	18	8	30	0	
5	0.030	18	8	30	0	
6	0.700	18	8	30	0	
7	20	17	7	20	0	

適用示方書

『シールド工事用標準セグメント』 土木学会・日本下水道協会

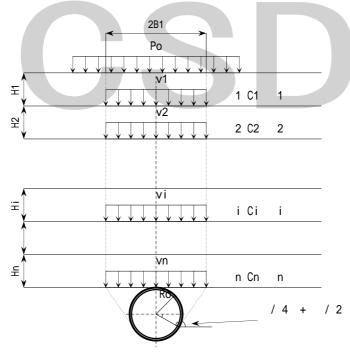
『トンネル標準示方書(シールド工法編)・同解説』土木学会 『道路橋示方書』 日本道路協会

参考文献

『セグメントの設計』

土木学会

2 セグメントにかかる外力の算定


(1) 鉛直荷重

1) 載荷荷重

載荷荷重は、上載荷重とし、10.0 (kN/m²)を見込みます。

2) 緩み高さ

土のアーチング効果に比較的信頼がおけるので設計用土圧に、緩み土圧を採用する。

Ro =
$$D/2$$

= 1.800/2
= 0.900 (m)

$$B_{1} = \text{Ro} \cdot \cot\left(\frac{45.0 + \frac{2}{2}}{2}\right)$$

$$= 0.900 \cdot \cot\left(\frac{2}{2}\right)$$

$$= 1.559 \text{ (m)}$$

$$V_{1} = \frac{B_{1} \cdot (_{1} - C_{1} / B_{1})}{\text{Ko} \cdot \text{tan}} \cdot (1 - e^{-\text{Ko} \cdot \text{tan}} \ ^{1 \cdot \text{H1/B1}}) + \text{Po} \cdot e^{-\text{Ko} \cdot \text{tan}} \ ^{1 \cdot \text{H1/B1}}$$

$$= \frac{1.559 \times (18 - 0 / 1.559)}{1.0 \times \text{tan} 30} \times (1 - e^{-1.0 \times \text{tan} 30 \times 1.500 / 1.559}) + 10.0 \times e^{-1.0 \times \text{tan} 30 \times 1.500 / 1.559}$$

$$= 26.454 \text{ (kN/m}^{2})$$

セグメント外径の2倍の土圧を求めると、

2• D• '2

 $= 2 \times 1.800 \times 8$

 $= 28.800 (kN/m^2)$

 $v < (2 \cdot D) \cdot \frac{1}{2}$ であるので ho = $2 \times D = 2 \times 1.800 = 3.600$ (m) とします。

ここに、

Ro : セグメント外半径 (m)

B₁: セグメント頂部における緩み幅の半分 (m)

ho : 緩み高さ(m)

v_n: n 層目に作用する緩み土圧 (kN/m²)

H_n: n層目の層厚 (m)

n: n層目の土の内部摩擦角(°)

C_n: n層目の土の粘着力 (kN/m²)

n: n層目の土の単位体積重量 (kN/m³)

'n: n層目の土の水中単位体積重量 s (kN/m³)

D : セグメント外径1.800 (m)Ko : 鉛直土圧と水平土圧の比1.0

Po : 載荷荷重 10.0 (kN/m²)

3) 土圧

Pe1 = ho• '2

 $= 3.600 \times 8.000$

 $= 28.800(kN/m^2)$

ここに、

Pe1 : 土圧 (kN/m²)

Po: 載荷荷重ho: 緩み高さ

H : 土被り

10.0 (kN/m²) 3.600 (m) 7.500 (m)

4) 水圧

 $Pw1 = H_2 \cdot w$

 $= 6.000 \times 10.0$

 $= 60.000 (kN/m^2)$

(2) 水平荷重

1) 土圧

qe1 =
$$(Pe1 + H_3 \cdot '_3) \cdot$$

= $(28.800 + 0.030 \times 8) \times 0.4$
= $11.616 (kN/m^2)$

qe2 = qe1 +
$$H_4$$
• ' $_4$ •
= 11.616 + 1.740 × 8 × 0.4
= 17.184 (kN/m²)

: 土の側方土圧係数

2) 水圧

$$qw1 = Pw1 + H_3 \cdot w$$

= 60.000 + 0.030 × 10.0
= 60.300 (kN/m²)

$$qw2 = qw1 + H_4^{\bullet} w$$

= 60.300 + 1.740 × 10.0
= 77.700 (kN/m²)

3) 自重

$$g = \frac{W}{2 \cdot Rc}$$

$$= \frac{3.531}{2 \times 0.870}$$

$$= 0.646 (kN/m^2)$$

$$W = \frac{G}{L}$$
= $\frac{2.648}{0.750}$
= 3.531 (kN/m)

$$Pg = g$$

= $\times 0.646$
= 2.029 (kN/m²)

ここに、

g : 自重 (kN/m²)

Pg: 自重による下部反力 (kN/m²)

W : トンネル単位長さ当たりの重量 (kN/m)

Rc : セグメント主桁図心半径0.870 (m)G : セグメント重量2.648 (kN/リング)

L: セグメント幅 0.750 (m)

4) 地盤反力

 $EI = 2100000000 \cdot I$ $= 210000000 \times 141.416 \times 10^{-8}$ = 296.974 $2 \cdot (Pe1 + Pw1) =$ $2 \times (28.800 + 60.000) = 177.600 (kN)$ 71.916 (kN) (qe1 + qw1) =11.616 + 60.300 =(qe2 + qw2) =17.184 + 77.700 = 94.884 (kN) $= \frac{\{2 \cdot (Pe1 + Pw1) - (qe1 + qw1) - (qe2 + qw2)\} \cdot Rc^4}{\{2 \cdot (Pe1 + Pw1) - (qe1 + qw1) - (qe2 + qw2)\} \cdot Rc^4}$ 24• $(\frac{100}{100}$ • EI + 0.0454• k• Rc⁴) $(177.600 - 71.916 - 94.884) \times 0.870^4$ $24 \times (\frac{100}{100} \times 296.974 + 0.0454 \times 40000.000 \times 0.870^{4})$ = 0.000193 (m)q = k $= 40000.000 \times 0.000193$ $= 7.720 (kN/m^2)$ ここに、 q: 地盤反力 (kN/m²)

: セグメントの変位(外方を正とする) (m)

EI: 曲げ剛性

Rc : セグメント主桁図心半径 0.870 (m) : セグメントの曲げ剛性有効率 100

I: セグメントの断面 2 次モーメント141.416 (cm⁴/m)E: セグメント部材のヤング係数210000000 (kN/m²)k: 地盤反力係数40000.000 (kN/m³)

(3) 荷重まとめ

鉛 直 荷 重 (セグメント上部)

土	圧	Pe1 =	28.800	(kN/m^2)
水	圧	Pw1 =	60.000	(kN/m^2)
鉛直	荷重	Pv1 =	88.800	(kN/m^2)

水 平 荷 重

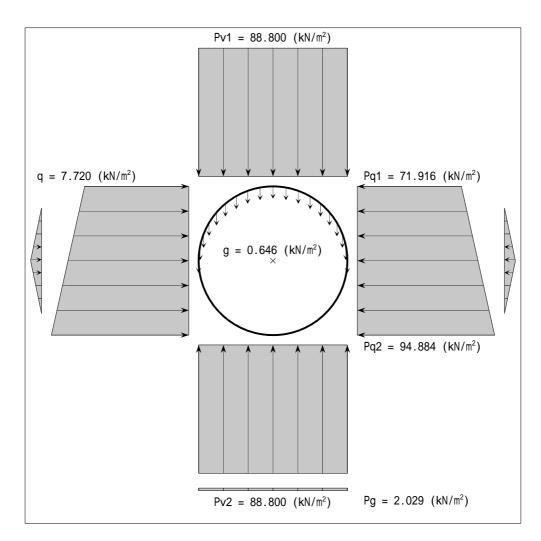
鉛直荷重

水平荷重(上) 土 圧 11.616 (kN/m^2) qe1 = 水 圧 60.300 (kN/m^2) qw1 =合 計 Pq1 =71.916 (kN/m^2)

水平荷重(下) qe2 = 土 圧 17.184 (kN/m^2) 水 圧 qw2 =77.700 (kN/m^2) 合 計 94.884 (kN/m^2) Pq2 =

地 盤 反 力 地盤反力 (kN/m^2) 7.720

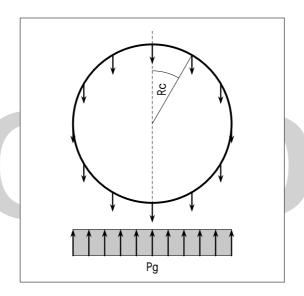
自 自 重 Pg = 2.029 (kN/m^2)


下 部 反 力

Pv2 =Pg = 自 重 2.029 (kN/m^2)

88.800

 (kN/m^2)


(4) 合成荷重図

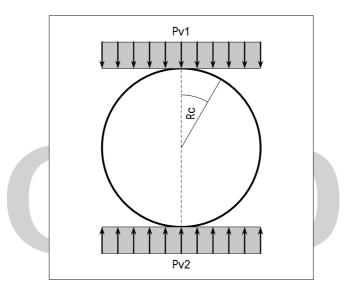
CSD

3 断面力の計算

(1) 自重による断面力

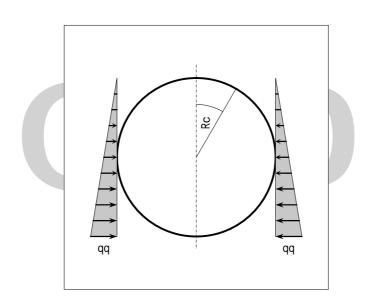
1) 0 ___ のとき

$$M_{g} = (\frac{3}{8} \cdot - \sin - \frac{5}{6} \cdot \cos) \cdot g \cdot Rc^{2} \cdot (1 + \frac{1}{100})$$

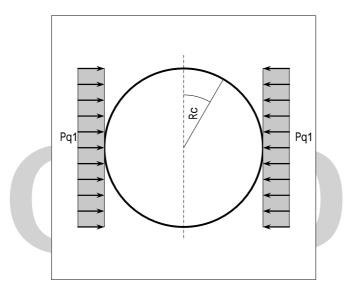

$$N_{g} = (\sin - \frac{1}{6} \cdot \cos) \cdot g \cdot Rc$$

$$Q_{g} = -(\cos + \frac{1}{6} \cdot \sin) \cdot g \cdot Rc$$

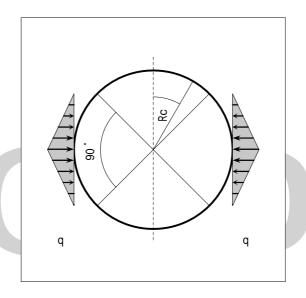
2) 2 のとき


$$\begin{aligned} & \mathsf{M}_{\mathsf{g}} \; = \; (-\frac{1}{8} \; + \; (\; \; - \; \;) \cdot \sin \; \; - \; \frac{5}{6} \cdot \cos \; \; - \; \frac{1}{2} \cdot \sin^2 \; \;) \cdot \mathsf{g} \cdot \mathsf{Rc}^2 \cdot \; (1 \; + \; \frac{100}{100}) \\ & \mathsf{N}_{\mathsf{g}} \; = \; (\; - \; \; \cdot \sin \; \; + \; \; \cdot \sin^2 \; \; - \; \frac{1}{6} \cdot \cos \; \;) \cdot \mathsf{g} \cdot \mathsf{Rc} \\ & \mathsf{Q}_{\mathsf{g}} \; = \; \{ (\; \; - \; \;) \cdot \cos \; \; - \; \; \cdot \sin \; \; \cdot \cos \; \; - \; \frac{1}{6} \cdot \sin \; \;) \cdot \mathsf{g} \cdot \mathsf{Rc} \end{aligned}$$

(2) 鉛直荷重による断面力


$$\begin{split} &M_{PV} = \frac{1}{4} \cdot (1 - 2 \cdot \sin^2 \) \cdot \text{Pv1} \cdot \text{Rc}^2 \cdot (1 + \frac{100}{100}) \\ &N_{PV} = \text{Pv1} \cdot \text{Rc} \cdot \sin^2 \\ &Q_{PV} = -\text{Pv1} \cdot \text{Rc} \cdot \sin \ \cdot \cos \end{split}$$

(3) 水平方向の三角形分布荷重による断面力


$$\begin{split} & M_{qq} = \frac{1}{48} \cdot (6 - 3 \cdot \cos - 12 \cdot \cos^2 + 4 \cdot \cos^3) \cdot qq \cdot Rc^2 \cdot (1 + \frac{100}{100}) \\ & N_{qq} = \frac{1}{16} \cdot (\cos + 8 \cdot \cos^2 - 4 \cdot \cos^3) \cdot qq \cdot Rc \\ & Q_{qq} = \frac{1}{16} \cdot (\sin + 8 \cdot \sin \cdot \cos - 4 \cdot \sin \cdot \cos^2) \cdot qq \cdot Rc \\ & qq = Pq2 - Pq1 \end{split}$$

(4) 水平方向の等分布荷重による断面力

$$\begin{split} &M_{Pq} = \frac{1}{4} \boldsymbol{\cdot} \left(1 - 2 \boldsymbol{\cdot} \cos^2 \right) \boldsymbol{\cdot} Pq1 \boldsymbol{\cdot} Rc^2 \boldsymbol{\cdot} \left(1 + \frac{100}{100}\right) \\ &N_{Pq} = \cos^2 \boldsymbol{\cdot} Pq1 \boldsymbol{\cdot} Rc \\ &Q_{Pq} = \sin \boldsymbol{\cdot} \cos \boldsymbol{\cdot} Pq1 \boldsymbol{\cdot} Rc \end{split}$$

(5) 地盤反力による断面力

− のとき 1) 0

$$M_{q} = (0.2346 - 0.3536 \cdot \cos) \cdot q \cdot Rc^{2} \cdot (1 + \frac{100}{100})$$
 $N_{q} = 0.3536 \cdot \cos \cdot q \cdot Rc$
 $Q_{q} = 0.3536 \cdot \sin \cdot q \cdot Rc$
(ただし、 $\frac{3}{4} \cdot \qquad \qquad$ のときは、 $Q_{q} = -Q_{q})$

(ただし、 $\frac{3}{4}$ ・

2) $\frac{1}{4}$ $\frac{1}{2}$ のとき

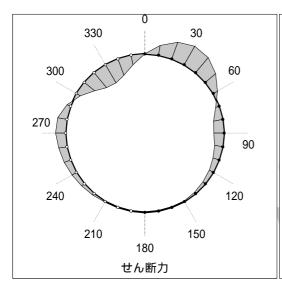
ここに、

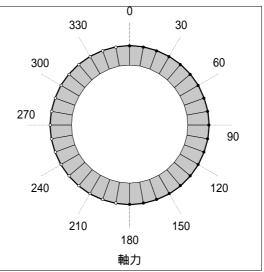
M	:	曲げモーメント	(kN·m/m)
N	:	軸力	(kN/m)
Q	:	せん断力	(kN/m)
	:	中心角	(rad)
g	:	自重	(kN/m^2)
Rc	:	セグメント主桁図心半径	(m)
Pv′	1:	鉛直荷重	(kN/m^2)
Pq	1:	水平荷重(上)	(kN/m^2)
Pq2	2:	水平荷重(下)	(kN/m^2)
q	:	地盤反力	(kN/m^2)

4 断面力計算結果

(1) 曲げモーメント

中心角	自重 M _a	鉛直 M _{Pv}	水平(三角) M _{og}	水平(等分布) M _{Pa}	地盤反力 M。	合計 M
(°)	(kN•m/m)	(kN·m/m)	(kN·m/m)	(kN•m/m)	(kN·m/m)	(kN·m/m)
0	0.169	16.803	-1.811	-13.608	-0.695	0.857
10	0.160	15.790	-1.728	-12.788	-0.664	0.770
20	0.135	12.872	-1.484	-10.425	-0.571	0.528
30	0.095	8.402	-1.087	-6.804	-0.419	0.188
40	0.044	2.918	-0.558	-2.363	-0.212	-0.171
50	-0.013	-2.918	0.064	2.363	0.043	-0.461
60	-0.071	-8.402	0.724	6.804	0.326	-0.618
70	-0.125	-12.872	1.351	10.425	0.597	-0.624
80	-0.167	-15.790	1.861	12.788	0.803	-0.505
90	-0.192	-16.803	2.173	13.608	0.884	-0.330
100	-0.194	-15.790	2.223	12.788	0.803	-0.170
110	-0.170	-12.872	1.978	10.425	0.597	-0.041
120	-0.121	-8.402	1.449	6.804	0.326	0.056
130	-0.054	-2.918	0.691	2.363	0.043	0.125
140	0.022	2.918	-0.196	-2.363	-0.212	0.169
150	0.097	8.402	-1.087	-6.804	-0.419	0.189
160	0.159	12.872	-1.846	-10.425	-0.571	0.190
170	0.201	15.790	-2.356	-12.788	-0.664	0.183
180	0.215	16.803	-2.535	-13.608	-0.695	0.180


(2) 軸力


中心角	自重 N _a	鉛直 N _{Pv}	水平(三角) N _{cc}	水平(等分布) N _{Pa}	地盤反力 N。	合計 N
(°)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)
0	-0.094	0.000	6.244	62.567	2.375	71.093
10	-0.075	2.330	6.148	60.680	2.339	71.422
20	-0.021	9.037	5.851	55.248	2.232	72.347
30	0.066	19.314	5.330	46.925	2.057	73.692
40	0.180	31.920	4.574	36.716	1.819	75.210
50	0.316	45.336	3.604	25.851	1.514	76.620
60	0.463	57.942	2.498	15.642	1.085	77.630
70	0.613	68.219	1.396	7.319	0.596	78.143
80	0.757	74.926	0.492	1.887	0.178	78.239
90	0.883	77.256	0.000	0.000	0.000	78.139
100	0.956	74.926	0.111	1.887	0.178	78.057
110	0.946	68.219	0.941	7.319	0.596	78.021
120	0.861	57.942	2.498	15.642	1.085	78.028
130	0.721	45.336	4.652	25.851	1.514	78.073
140	0.549	31.920	7.152	36.716	1.819	78.156
150	0.375	19.314	9.656	46.925	2.057	78.328
160	0.227	9.037	11.794	55.248	2.232	78.538
170	0.128	2.330	13.231	60.680	2.339	78.708
180	0.094	0.000	13.738	62.567	2.375	78.773

(3) せん断力

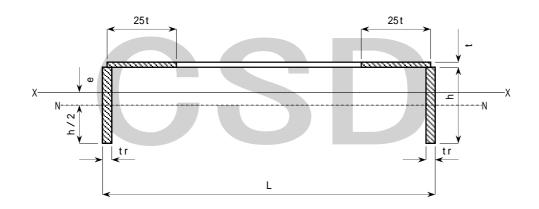
中心角	自重 Q q	鉛直 Q _{Pv}	水平(三角) Q _{qq}	水平(等分布) ∩₋	地盤反力 Q。	合計 Q
(°)	(kN/m)	(kN/m)	(kN/m)	Q _{Pq} (kN/m)	(kN/m)	(kN/m)
0	0.000	0.000	0.000	0.000	0.000	0.000
10	-0.113	-13.212	1.084	10.700	0.412	-1.128
20	-0.216	-24.830	2.130	20.109	0.812	-1.996
30	-0.302	-33.453	3.077	27.092	1.187	-2.397
40	-0.361	-38.041	3.838	30.808	1.527	-2.229
50	-0.387	-38.041	4.295	30.808	1.804	-1.521
60	-0.375	-33.453	4.326	27.092	1.880	-0.530
70	-0.323	-24.830	3.836	20.109	1.637	0.428
80	-0.229	-13.212	2.790	10.700	1.008	1.057
90	-0.094	0.000	1.249	0.000	0.000	1.155
100	0.073	13.212	-0.627	-10.700	-1.008	0.951
110	0.245	24.830	-2.587	-20.109	-1.637	0.742
120	0.389	33.453	-4.326	-27.092	-1.880	0.543
130	0.482	38.041	-5.544	-30.808	-1.804	0.367
140	0.509	38.041	-6.001	-30.808	-1.527	0.214
150	0.463	33.453	-5.575	-27.092	-1.187	0.061
160	0.351	24.830	-4.293	-20.109	-0.812	-0.033
170	0.189	13.212	-2.333	-10.700	-0.412	-0.044
180	0.000	0.000	0.000	0.000	0.000	0.000

曲げモーメント図、軸力図、せん断力図

(4) 最大値

項目		М	N	Q
(単位)	(°)	(kN·m/m)	(kN/m)	(kN/m)
モーメント +Mmax	0	0.857	71.093	0.000
軸 力 Nmax	180	0.180	78.773	0.000
せん 断 力 Qmax	30	0.188	73.692	-2.397

(5) 最小値


項 目 (単位)	(°)	M (kN•m/m)	N (kN/m)	Q (kN/m)
モーメント -Mmax	70	-0.624	78.143	0.428
軸 力 Nmin	0	0.857	71.093	0.000
せん 断 力 Qmin	0	0.857	71.093	0.000

5 部材の設計

(1) 主桁の設計

1) 主桁の断面性能の計算

入力条件

主桁厚さ	tr =	8(mm)
主桁高さ	h =	75(mm)
セグメント幅	L =	750(mm)
スキンプレート厚さ	t =	3(mm)

主桁の断面積

SA =
$$2 \cdot (tr \cdot h + 25 \cdot t^2)$$

= $2 \times (8 \times 75 + 25 \times 3^2)$
= 1650.000
= $16.500 \times 10^2 \text{ (mm}^2\text{)}$

主桁図心位置

(外側)

$$yo = \frac{2 \cdot \{t \, r \cdot h \cdot (t + \frac{h}{2}) + 25 \cdot t^{2} \cdot \frac{t}{2}\}}{SA}$$

$$= \frac{2 \times \{8 \times 75 \times (3 + \frac{75}{2}) + 25 \times 3^{2} \times \frac{3}{2}\}}{16.500 \times 10^{2}}$$

$$= 29.864 \text{ (mm)}$$

(内側)

$$yi = (h + t) - yo$$

= $(75 + 3) - 29.864$
= 48.136 (mm)

主桁図心半径

$$Rc = R - yo$$

$$= \frac{1800}{2} - 29.864$$

$$= 870.136 \text{ (mm)}$$

主桁断面2次モーメント

$$I = 2 \cdot \left\{ t \, r \cdot \frac{y \, i^3}{3} + t \, r \cdot \frac{(yo - t)^3}{3} + 25 \cdot t^2 \cdot (yo - \frac{t}{2})^2 + \frac{25 \cdot t \cdot t^3}{12} \right\} / \frac{L}{1000}$$

$$= 2 \times \left\{ 8 \times \frac{48.136^3}{3} + 8 \times \frac{(29.864 - 3)^3}{3} + 25 \times 3^2 \times (29.864 - \frac{3}{2})^2 + \frac{25 \times 3 \times 3^3}{12} \right\} / \frac{750}{1000}$$

$$= 141.4159.091$$

$$= 141.416 \times 10^4 \, (mm^4/m)$$

主桁断面係数

(外側)

Zo =
$$\frac{I}{yo}$$

= $\frac{141.416 \times 10^4}{29.864}$
= 47353.335
= 47.353×10^3 (mm³)

(内側)

$$Zi = \frac{I}{yi}$$

$$= \frac{141.416 \times 10^4}{48.136}$$

$$= 29378.428$$

$$= 29.378 \times 10^3 \text{ (mm}^3)$$

2) 主桁の計算

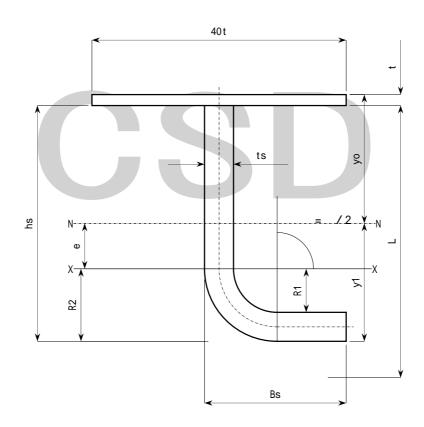
主桁の実応力度の計算は、次式で行います。

$$o = (\frac{N}{SA} + \frac{M}{Zo}) \cdot L$$
$$i = (\frac{N}{SA} - \frac{M}{Zi}) \cdot L$$

ここに、

o:外縁実応力度(圧縮(+),引張(-)) (N/mm²)
 i:内縁実応力度(圧縮(+),引張(-)) (N/mm²)
 N:セグメントの軸力 (N/m)
 M:セグメントの曲げモーメント (N・mm/m)
 SA:セグメント主桁の有効断面積 (mm²)
 Zo:セグメント主桁の外縁側断面係数 (mm³/m)
 L:セグメントの幅 (m)

中心角	N/A	M/Zo	M/Zi	0	i
()	$(N/mm^2/m)$	$(N/mm^2/m)$	$(N/mm^2/m)$	(N/mm ²)	(N/mm ²)
0	43.087	24.131	38.895	50.414	3.144
10	43.286	21.681	34.947	48.725	6.254
20	43.847	14.867	23.964	44.036	14.912
30	44.662	5.294	8.532	37.467	27.098
40	45.582	-4.815	-7.761	30.575	40.007
50	46.436	-12.981	-20.923	25.091	50.519
60	47.048	-17.401	-28.048	22.235	56.322
70	47.359	-17.570	-28.321	22.342	56.760
80	47.418	-14.219	-22.920	24.899	52.754
90	47.357	-9.292	-14.977	28.549	46.751
100	47.307	-4.787	-7.716	31.890	41.267
110	47.285	-1.154	-1.861	34.598	36.860
120	47.290	1.577	2.542	36.650	33.561
130	47.317	3.520	5.673	38.128	31.233
140	47.367	4.759	7.670	39.095	29.773
150	47.472	5.322	8.578	39.596	29.171
160	47.599	5.350	8.623	39.712	29.232
170	47.702	5.153	8.306	39.641	29.547
180	47.741	5.068	8.169	39.607	29.679


許容圧縮応力度 $sa_1 = 215 (N/mm^2)$ 許容引張応力度 $sa_2 = 215 (N/mm^2)$

外緣側最大圧縮実応力度 $o_1 = 50.414 \, (N/mm^2) \, OK$ 外緣側最大引張実応力度 $o_2 = 22.235 \, (N/mm^2) \, OK$ 内緣側最大圧縮実応力度 $i_1 = 56.760 \, (N/mm^2) \, OK$ 内緣側最大引張実応力度 $i_2 = 3.144 \, (N/mm^2) \, OK$

(2) 縦リブの設計

1) 縦リブの断面性能の計算

入力条件

縦リプ厚さ ts = 8(mm) 縦リプ高さ hs = 68(mm) 縦リブ幅 Bs = 72(mm) $\chiキンプレート厚さ <math>t = 3(mm)$

縦リブの断面積

R1 =
$$1.5 \cdot ts$$

= 1.5×8
= 12.000 (mm)

R2 =
$$2.5 \cdot ts$$

= 2.5×8
= 20.000 (mm)

RA =
$$40 \cdot t^2 + ts \cdot (hs - R2) + \frac{1}{4} \cdot (R2^2 - R1^2) + ts \cdot (Bs - R2)$$

= $40 \times 3^2 + 8 \times (68 - 20.000) + \frac{1}{4} \times (20.000^2 - 12.000^2) + 8 \cdot (72 - 20.000)$
= 1361.062
= 13.611×10^2 (mm²)

縦リブの図心位置

$$M = (2 \cdot ts + \frac{ts}{24}) \cdot \frac{4}{4} \cdot sin^{2} \frac{4}{4}$$
$$= (2 \times 8 + \frac{8}{24}) \times \frac{4}{4} \times sin^{2} \frac{4}{4}$$

$$= 10.398 \, (mm)$$

$$G = 40 \cdot t^{2} \cdot \frac{t}{2} + (t + \frac{\text{hs} - \text{R2}}{2}) \cdot \text{ts} \cdot (\text{hs} - \text{R2}) + \frac{(\text{hs} + t - \text{R2} + \text{M}) \cdot \cdot (\text{R2}^{2} - \text{R1}^{2})}{4}$$

$$+ \text{ts} \cdot (\text{Bs} - \text{R2}) \cdot (\text{hs} + t - \frac{\text{ts}}{2})$$

$$= 40 \times 3^{2} \times \frac{3}{2} + (3 + \frac{68 - 20.000}{2}) \times 8 \times (68 - 20.000) +$$

$$\frac{(68 + 3 - 20.000 + 10.398) \times \times (20.000^{2} - 12.000^{2})}{4} + 8 \times (72 - 20.000) \times (68 + 3 - \frac{8}{2})$$

$$= 51124.800$$

$$= 51.125 \times 10^{3} \text{ (mm}^{3}\text{)}$$

縁距離(外側)

$$yo = \frac{G}{RA}$$

$$= \frac{51.125 \times 10^{3}}{13.611 \times 10^{2}}$$

$$= 37.562 \text{ (mm)}$$

縁距離(内側)

$$yi = t + hs - yo$$

= 3 + 68 - 37.562
= 33.438 (mm)

縦リブの断面2次モーメント

$$I = 40 \cdot t^{2} \cdot (y_{0} - \frac{t}{2})^{2} + \frac{t_{0} \cdot (y_{0} - t)^{3}}{3} + \frac{t_{0} \cdot (y_{0} - R_{0})^{3}}{3} + \frac{t_{0} \cdot (y_{0} - R_{0})^{3}}{3} + \frac{t_{0} \cdot (y_{0} - R_{0})^{3}}{4} \cdot (R_{0}^{2} - R_{0}^{2})^{2} + t_{0} \cdot (y_{0}^{2} - R_{0}^{2})^{2} + 0.055 \cdot (R_{0}^{2} - R_{0}^{2})^{2} + 0.055 \cdot ($$

$$= 40 \times 3^{2} \times (37.562 - \frac{3}{2})^{2} + \frac{8 \times (37.562 - 3)^{3}}{3} + \frac{8 \times (33.438 - 20.000)^{3}}{3} + \frac{4}{4} \times (20.000^{2})^{2}$$

$$- 12.000^{2}) \times (33.438 - 20.000 + 10.398)^{2} + 8 \times (72 - 20.000) \times (33.438 - \frac{8}{2})^{2}$$

$$+ 0.055 \times (20.000^{4} - 12.000^{4})$$

$$= 1067131.579$$

$$= 106.713 \times 10^{4} \text{ (mm}^{4})$$

縦リブの断面係数

(外側)

Zo =
$$\frac{I}{yo}$$

= $\frac{106.713 \times 10^4}{37.562}$
= 28409.829
= 28.410 × 10³ (mm³)

(内側)

$$Zi = \frac{I}{yi}$$

$$= \frac{106.713 \times 10^4}{33.438}$$

$$= 31913.691$$

$$= 31.914 \times 10^3 \text{ (mm}^3)$$

縦リブの細長比

縦リブの長さ

$$ls = L - 2 \cdot tr$$

= 750 - 2 \times 8
= 734.000 (mm)

縦リブの断面2次半径

$$r = \sqrt{\frac{1}{RA}}$$

$$= \sqrt{\frac{106.713 \times 10^4}{13.611 \times 10^2}}$$

$$= 28.000 \text{ (mm)}$$

縦リブの細長比

$$= \frac{1s}{r}$$

$$= \frac{734.000}{28.000}$$

$$= 26$$

縦リブの偏心

$$e = 10.000 (mm)$$

$$e' = (\frac{h}{2} + t) - yo + e$$

= $(\frac{75}{2} + 3) - 37.562 + 10.000$
= 12.938 (mm)

セグメント長手方向の土圧に対する検討

縦リブに作用する最大外圧 Pmax は、底部反力(Pv1 + Pg)、側方荷重(Pq2)、地盤反力の最大点の荷重($\frac{Pq1 + Pq2}{2}$ + q)の中で最大のものを選択する。

底部反力:

側方荷重:

$$Pq2 = 94.884 (kN/m^2)$$

地盤反力の最大点の荷重:

$$\frac{(Pq1 + Pq2)}{2} + q$$

$$= \frac{(71.916 + 94.884)}{2} + 7.720$$

$$= 91.120 (kN/m^2)$$

故に P3 は 0.095 (N/mm²)となる。

縦リブ1本が受ける土荷重

$$W = P3 \cdot \frac{1}{360} \cdot D$$

$$= 0.095 \times \frac{20.000}{360} \times 1800$$

$$= 29.809 \text{ (N/mm)}$$

土圧による曲げモーメント

主桁によって両端を固定された梁と考え最大曲げモーメントを計算する

$$M = W \cdot \frac{1s^2}{12}$$

$$= 29.809 \times \frac{734.000^2}{12}$$

$$= 1338314.800 (N \cdot mm)$$

応力度の算定

(外側)
$$o = \frac{M}{Zo}$$

$$= \frac{1338314.800}{28409.829}$$

$$= 47.107 (N/mm^2) 215 (N/mm^2) OK$$
(内側)
$$i = \frac{M}{Zi}$$

$$= \frac{1338314.800}{31913.691}$$

$$= 41.935 (N/mm^2)$$

$$= 41.935 (N/mm^2) 215 (N/mm^2) OK$$

2) 縦リブの計算

ジャッキ推力の偏心量を主桁中心より内側 1.0 cm と仮定し、縦リブは曲げと 圧縮を受ける部材として、日本道路協会『道路橋示方書・鋼橋偏』に示された 条件で安全性を判定する。

$$\frac{-\frac{c}{ca}}{\frac{b}{ba}(1 - \frac{c}{ea})} = 1.0$$

$$\frac{hs}{ts} = 34 \quad (SM490Aの場合)$$

$$P = \frac{Pj}{N}$$

$$= \frac{500000.000}{2}$$

$$= 250000.000 (N/4)$$

$$c = \frac{P}{RA}$$

$$= \frac{250000.000}{1361.062}$$

$$= 183.680 (N/mm2)$$

$$_{ca}$$
 = 325 - 1.42 · (- 8) · 1.5
= 325 - 1.42 × (26 - 8) × 1.5
= 286.660 (N/mm²)

$$b = \frac{e' \cdot P}{Zo}$$

$$= \frac{12.938 \times 250000.000}{28409.829}$$

$$= 113.851 (N/mm2)$$

$$b_{a} = y$$

= 325 (N/mm²)

$$e_{a} = \frac{1200000}{2}$$

$$= \frac{1200000}{26^{2}}$$

$$= 1775.148 \text{ (N/mm}^{2})$$

以上により、

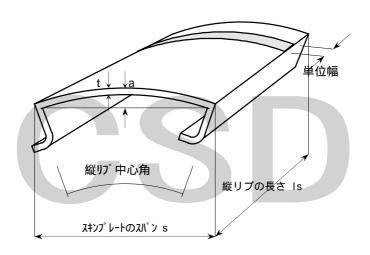
$$\frac{\frac{c}{ca} + \frac{b}{ba} \cdot (1 - \frac{c}{ca})}{\frac{183.680}{286.660} + \frac{113.851}{325 \times (1 - \frac{183.680}{1775.148})} = 1.032$$
 NO

$$\frac{\text{hs}}{\text{ts}}$$
 34 $\frac{68}{8}$ = 8.500 OK

ここに、

。: 純圧縮応力度 (N/mm²) ca : 純圧縮許容応力度 (N/mm²)

細長比		ca(N/mm²)		
	8		325	
8 <	115	325 - 1.42• (- 8)•1.5	


b: 曲げ圧縮応力度 (N/mm²) _{ba} : 許容曲げ圧縮応力度 (N/mm²)

ea : オイラーの許容座屈応力度 (N/mm²) P : 縦リブー本当たりジャッキ推力 250000.000 (N) RA: 縦リブー本当たり有効断面積 1361.062 (mm²) Pj : ジャッキ推力 500000.000 (N) 2 (本)

N : ジャッキー本あたりの縦リブ本数 : 縦リブの細長比

26

(3) スキンプレートの設計

スキンプレートは、主桁および縦リブで支持された薄肉円筒殻で土圧・水圧・裏込め注入圧を受ける構造として位置付けられ、強度の算定は一般的に次の考え方で検討される。

スキンプレートを縦リブで固定された両端固定の直板とし、荷重の増加とともに塑性ヒンジが形成され最終的には膜応力状態になるものと考える。

$$s = 2 \cdot Ri \cdot sin(\frac{2}{2})$$

= $2 \times 898.500 \times sin(\frac{20.000}{2})$
= 312.046 (mm)

$$I = 1.0 \cdot \frac{t^3}{12}$$

$$= 1.0 \times \frac{3^3}{12}$$

$$= 2.250 \text{ (mm}^4\text{) (1mm 当1)}$$

$$Pp = 4 \cdot (\frac{t}{s})^{2} \cdot y$$

$$= 4 \times (\frac{3}{312.046})^{2} \times 325$$

$$= 0.120 \text{ (N/mm}^{2})$$

$$F = \frac{\frac{v \cdot t \cdot s^{2}}{4 \cdot E \cdot I}}{(\frac{4 \cdot E \cdot I}{1 - 2})}$$

$$= \frac{325 \times 3 \times 312.046^{2}}{(\frac{4 \times 210000.000 \times 2.250}{1 - 0.3^{2}})}$$

$$= 45.711$$

Pu =
$$1.10 \cdot Pp \cdot \sqrt{F}$$

= $1.10 \times 0.120 \times \sqrt{45.711}$
= $0.892 (N/mm^2)$
= $892.000 (kN/m^2)$

スキンプレートに作用する最大外圧 Pmax は、底部反力(Pv1 + Pg)、側方荷重(Pq2)、地盤反力の最大点の荷重($\frac{Pq1 + Pq2}{2}$ + q)の中で最大のものを選択する。

短期の場合は、裏込め注入圧(300.0 kN/m²)を考慮する。

底部反力:

$$Pv1 + Pg$$

= 88.800 + 2.029
= 90.829 (kN/m²)

側方荷重:

$$Pq2 = 94.884 (kN/m^2)$$

地盤反力の最大点の荷重:

$$\frac{(Pq1 + Pq2)}{2} + q$$

$$= \frac{(71.916 + 94.884)}{2} + 7.720$$

$$= 91.120 (kN/m^2)$$

故に Pmax は 94.884 (kN/m²)となる。

$$= \frac{Pu}{Pmax}$$

$$= \frac{892.000}{94.884}$$

$$= 9.401 1.5 (長期) OK$$

$$= \frac{892.000}{394.884}$$

$$= 2.259 1.5 (短期) OK$$

ここに、

Pu : 降伏荷重 (kN/m²)

Pmax : セグメントにかかる最大荷重 (kN/m²)

I: 単位幅 1mm 当りのスキンプレートの断面 2 次モーメント (mm⁴)

s : スキンプレートのスパン = 縦リブ間隔 (mm)

: 安全率

t : 縦リブ中心角 20.000 (°)
y : 材料の降伏点応力 325 (N/mm²)
t : スキンプレート厚 3 (mm)
E : 材料のヤング係数 210000.000 (N/mm²)

: 材料のポアソン比(=0.3)

Ri : スキンプレート中心半径 898.500 (mm)

(4) 継ぎ手ボルトの設計

継ぎ手ボルトについては、主桁図心とボルト中心の偏心による曲げモーメントと軸力によるボルトの引張力に対する検討と、Kセグメントに生ずるせん断力に対する検討を次式により、行います。

1) 引張力に対する検討

eo = h - (e1 +
$$\frac{d1''}{2}$$
)
= 75 - (30 + $\frac{0}{2}$)
= 45.000 (mm)

$$T = \frac{\{\frac{(M - N \cdot y_0) \cdot L}{e_0}\}}{\text{nb} \cdot \text{Ab}}$$

$$= \frac{\{\frac{(857000.000 - 71093.000 \times 29.864) \times 0.750}{45.000}\}}{4 \times 157.000}$$
= -33.602 (N/mm²) 120 (N/mm²) OK

ここに、

T: ボルトの引張り応力度 (N/mm²)

eo : スキンプレートの内側よりボルト中心までの距離 (mm)

M: 最大曲げモーメント 857000.000 (N·mm/m) N: 最大曲げモーメントの時の軸力 71093.000 (N/m) L: セグメントの幅 0.750 (m)nb: ボルトの本数 4 (本) Ab: ボルト1本当たりの有効断面積 157.000 (mm²) yo : 主桁図心の距離 29.864 (mm) h : 主桁高さ 75 (mm) e1: セグメント継ぎボルトへりあき 30 (mm) d1'': セグメント継ぎボルトピッチ 0 (mm)

2) せん断力に対する検討

最大せん断力はKセグメントの継手位置である = 0°~50°の範囲で次式により求めます。

(°)	軸力 (N/m)	せん断力 (N/m)	N•(sin -0.3•cos)	Q (cos -0.3 sin)	Qo (N/m)
0	71093.000	0.000	8145.813	0.000	8145.813
10	71422.000	-1128.000	8183.509	-1170.553	9354.062
20	72347.000	-1996.000	8289.496	-2071.297	10360.793
30	73692.000	-2397.000	8443.605	-2487.425	10931.030
40	75210.000	-2229.000	8617.537	-2313.087	10930.624
50	76620.000	-1521.000	8779.095	-1578.378	10357.473

従って Ring 当りに換算した最大せん断力 Qo max は、

Qo max =
$$10931.030 \times 0.750$$

= 8198.273 (N/J) *)

最大せん断応力度は次式により計算します。

$$b = \frac{\text{Qo max}}{\text{nb} \cdot \text{Abs}}$$

$$= \frac{8198.273}{4 \times 201.000}$$

$$= 10.197 \text{ (N/mm}^2) \qquad 90 \text{ (N/mm}^2) \qquad \text{OK}$$

ここに、

Qo max : 最大せん断力 (N)

b : 最大せん断応力度 (N/mm²) f : 鋼の摩擦係数(=0.3)

 : 継手角度
 23 (°)

 nb: ボルト本数
 4 (本)

 Abs: ボルト1本当たりの軸断面積
 201.000 (mm²)

 L: セグメントの幅
 0.750 (m)

 最大せん断力が得られる角度
 30 (°)

6 材料表 (1リング当り Kg)

$1800 \times 750 \times 75 \times 8 \times 3$ (SM490A) (= 23°) (= 20.000°)								
	名 称	形状	長さ	単 重	数量	重量		
		(mm)	(mm)	(kg)	(個)	(kg)		
	主 桁	75 × 8.0	1184	5.577	2	11.154		
	継ぎ手板	75 × 8.0	750	3.533	2	7.066		
	スキンプレート	742 × 3.0	1247	21.790	1	21.790		
A(80°)	縦 リ ブ	125 × 8.0	734	5.762	3	17.286		
A(00)	注 入 孔	2B	60	0.770	1	0.770		
	吊り金具	100 × 6.0	75	0.353	1	0.353		
	補強リブ	-		-	-	-		
	計					58.419		
	主 桁	75 × 8.0	1166	5.492	2	10.984		
	継ぎ手板(1)	75 × 8.0	750	3.533	1	3.533		
	継ぎ手板(2)	81 × 8.0	750	3.815	1	3.815		
	スキンプレート	742 × 3.0	1245	21.755	1	21.755		
B(80°)	縦 リ ブ	125 × 8.0	734	5.762	3	17.286		
	注 入 孔	2B	60	0.770	1	0.770		
	吊り金具	100 × 6.0	75	0.353	1	0.353		
	補強リブ	-	-	-	-	-		
	計			'		58.496		
	主 桁	75 × 8.0	617	2.906	2	5.812		
	継ぎ手板	81 × 8.0	750	3.815	2	7.630		
	スキンプレート	742 × 3.0	621	10.851	1	10.851		
V(40°)	縦 リブ	125 × 8.0	734	5.762	1	5.762		
K(40°)	注 入 孔	2B	60	0.770	1	0.770		
	吊り金具	100 × 6.0	75	0.353	1	0.353		
	補強リブ	-	-	-	-	-		
	計		ı	· · · · · · · · · · · · · · · · · · ·		31.178		
	ボルト	M16(4·6)	40	0.138	38	5.244		

50.088 (Kg/Ring) 板 36.458 (Kg/Ring) スキンプレート 97.941 (Kg/Ring) · ブ 孔 74.906 (Kg/Ring) 注 3.850 (Kg/Ring) 具 ブ 吊 り金 1.765 (Kg/Ring) 補 強リ 0.000 (Kg/Ring) ボ ル 5.244 (Kg/Ring)

> 合 計 2A + 2B + 1K + 38B.N = 270.252 270 (Kg/Ring) 360 (Kg/m)