
物資収支計算

物質収支計算

土質条件の整理

- 標準断面図 -

- 土質内訳 -

	層厚	土粒子比重	含 水 比	見掛比重	断面積	掘削量
	(m)	Gs	w(%)	t	A(m²)	V(m³/本)
砂質粘土	0.800	2.543	80.500	1.506	1.166	2.833
粘土	1.180	2.650	50.000	1.710	1.913	4.649
平均		2.617	59.395	1.633	1	

- 乾砂量内訳 -

	礫		砂分		シルト		計
	%	(t/本)	%	(t/本)	%	(t/本)	(t/本)
砂質粘土	0.00	0.000	5.00	0.118	95.00	2.246	2.364
粘土	0.00	0.000	0.00	0.000	100.00	5.300	5.300
計	0.00	0.000	1.54	0.118	98.46	7.546	7.664

見掛比重: $\frac{W + 100}{W + 100 / Gs}$

乾砂量 : $V \times t \times \frac{100}{100 + w}$

平均含水比: $\frac{12.216 - 7.664}{7.664} \times 100 = 59.395$ (%)

地山真比重: $\frac{7.664}{7.482 - 4.553} = 2.617$

物質収支計算

1. 計画条件

1) 呼び径: 1650 2) 掘進機外径: Bs 1.980 (m) 3) 推進延長: L 100.000 (m) 4) 推進管長: 2.430 (m/本) Lp 5) 掘進速度: S 60 (mm/min) 6) 送泥流量: Q_1 $1.098 \, (m^3/min)$ 7) 送泥水比重: 1.150 8) 土粒子の真比重: 2.617 Gs 9) 地山の含水比: W 59.40 (%) 10) 地山の粒度構成 礫: Sı 0.00 (%) 砂: S_2 1.54 (%) S_3 98.46 (%) シルト、粘土: 50.00 (Wt%) 11) 比重濃度: 12) 含水比(脱水ケーキ): 70.00 (%) 13) 日進量: 5.10 (m/日) 14) 1日当り作業時間: 8 (時間) 2.10 (本/日) 15) 1日当り施工本数:

[送排泥流量の計算]

掘削断面積 : $A = \frac{1}{4} \times Bs^2 = \frac{1}{4} \times 1.980^2$

 $= 3.079 (m^2)$

掘削土量(真体積): $q = A \times \frac{S}{1000} = 3.079 \times \frac{60}{1000}$

 $= 0.185 \, (m^3/min)$

排泥管管径 : d。

= 0.1053 (m)

排泥管内断面積 : $a_2 = \frac{1}{4} \times d_2^2 = \frac{1}{4} \times 0.1053^2$

重力加速度 : g

 $= 0.0087 (m^2)$

= 9.8 (m/s²)

管内限界沈殿流速: $V_L = F_L \times \sqrt{2gd_2 \frac{Gs - 0}{0}}$ (Durand の公式) $= 1.345 \times \sqrt{2 \times 9.8 \times 0.1053 \times \frac{2.617 - 1.00}{1.00}}$

= 2.457 (m/sec)

ここに、 。: 清水比重 = 1.00

排泥流量 : $Q_2 = a_2 \times V_L \times 60 = 0.0087 \times 2.457 \times 60$

= 1.283 (m³/min)

送泥流量 : $Q_1 = Q_2 - q = 1.283 - 0.185$

= 1.098 (m³/min)

[掘進開始前]

推進するための必要貯留泥水量は10分間に流れる泥水量の1.5倍とする。

貯留泥水容積: $V_0 = 10 \times 送泥流量(Q_1) \times 1.5 = 10 \times 1.098 \times 1.5$ = 16.47 (m^3)

貯留泥水重量: W₀ = V₀ × 送泥水比重(₁) = 16.47 × 1.150

= 18.94 (t)

貯留泥水重量濃度: $C_0 = \frac{Gs \times (1 - 0)}{1 \times (Gs - 0)} \times 100$

$$= \frac{2.617 \times (1.150 - 1.000)}{1.150 \times (2.617 - 1.000)} \times 100$$

= 21.11 (Wt%)

4.00(t)

ここに、 。: 清水比重 = 1.00

土粒子重量 : $Wa_0 = W_0 \times \frac{C_0}{100} = 18.94 \times \frac{21.11}{100}$

水分重量 : $Ww_0 = W_0 \times \frac{(100 - C_0)}{100} = 18.94 \times \frac{(100 - 21.11)}{100}$

= 14.94 (t)

土粒子容積 : $Va_0 = \frac{Wa_0}{Gs} = \frac{4.00}{2.617}$

水分容積 : $Vw_0 = \frac{Ww_0}{1,000} = \frac{14.94}{1,000}$ = 1.53 (m³)

 $_{0}$ 1.000 = 14.94 (m³)

容 積: $V_0 = Va_0 + Vw_0 = 1.53 + 14.94$ = 16.47 (m³)

2. 送泥水

送泥流量 : $V_1 = Q_1 \times T = 1.098 \times 40.50$ = 44.47 (m³/本)

掘進時間 : $T = \frac{Lp}{S} \times 1000 = \frac{2.430}{60} \times 1000$

= 40.50 (min/本) 送泥重量 : W₁ = V₁ × ₁ = 44.47 × 1.150

送泥重量濃度 : $C_1 = \frac{Gs \times (_{_1} - _{_0})}{_{_1} \times (Gs - _{_0})} \times 100$ = 51.14 (t/本)

 $= \frac{2.617 \times (1.150 - 1.000)}{1.150 \times (2.617 - 1.000)} \times 100$

= 21.11 (Wt%) ここに、 ₀ : 清水比重 = 1.00

土粒子重量 : $Wa_1 = W_1 \times \frac{C_1}{100} = 51.14 \times \frac{21.11}{100}$

= 10.80 (t/本)

水分重量 : $Ww_1 = W_1 \times \frac{(100 - C_1)}{100} = 51.14 \times \frac{(100 - 21.11)}{100}$ = 40.34 (t/本)

重 量: $W_1 = Wa_1 + Ww_1 = 10.80 + 40.34$

= 51.14 (t/本) 土粒子容積 : $Va_1 = \frac{Wa_1}{Gs} = \frac{10.80}{2.617}$

水分容積 : $Vw_1 = \frac{Ww_1}{0} = \frac{40.34}{1.000}$ = 4.13 (m³/本)

不分合模 . $vw_1 = \frac{1}{0} = \frac{1.000}{1.000}$ = 40.34 (m³/本)

容 積: $V_1 = Va_1 + Vw_1 = 4.13 + 40.34$ = 44.47 (m³/本)

3. 掘削地山

掘削容量 :
$$V_2 = \frac{1}{4} \times Bs^2 \times Lp = \frac{1}{4} \times 1.980^2 \times 2.43$$

見掛比重 :
$$t = \frac{w + 100}{w + 100 / Gs} = \frac{59.40 + 100}{59.40 + 100 / 2.617}$$

掘削重量 :
$$W_2 = V_2 \times t = 7.48 \times 1.633$$

土粒子重量:
$$Wa_2 = W_2 \times \frac{100}{(100 + w)} = 12.21 \times \frac{100}{(100 + 59.40)}$$

水分重量 :
$$Ww_2 = W_2 \times \frac{W}{(100 + W)} = 12.21 \times \frac{59.40}{(100 + 59.40)}$$

重 量:
$$W_2 = Wa_2 + Ww_2 = 7.66 + 4.55$$

土粒子容積:
$$Va_2 = \frac{Wa_2}{Gs} = \frac{7.66}{2.617}$$

水分容積 :
$$Vw_2 = \frac{Ww_2}{0} = \frac{4.55}{1.000}$$

容 積:
$$V_2 = Va_2 + Vw_2 = 2.93 + 4.55$$

《地山粒度構成》

礫 重 量:
$$Wr_2 = Wa_2 \times \frac{S_1}{100} = 7.66 \times \frac{0.00}{100}$$

砂 重 量:
$$Ws_2 = Wa_2 \times \frac{S_2}{100} = 7.66 \times \frac{1.54}{100}$$

シルト、粘土重量:
$$Wc_2 = Wa_2 \times \frac{S_3}{100} = 7.66 \times \frac{98.46}{100}$$

重 量:
$$W_2 = Wr_2 + Ws_2 + Wc_2 + Ww_2 = 0.00 + 0.12 + 7.54 + 4.55$$

礫 容 積:
$$Vr_2 = \frac{Wr_2}{Gs} = \frac{0.00}{2.617}$$

砂 容 積:
$$Vs_2 = \frac{Ws_2}{Gs} = \frac{0.12}{2.617}$$

シルト、粘土容積:
$$Vc_2 = \frac{Wc_2}{Gs} = \frac{7.54}{2.617}$$

水分容積 :
$$Vw_2 = \frac{Ww_2}{0} = \frac{4.55}{1.000}$$

$$=$$
 4.55 (m 3 /本)

容 積:
$$V_2 = Vr_2 + Vs_2 + Vc_2 + Vw_2 = 0.00 + 0.05 + 2.88 + 4.55$$

4. 排泥水

砂・礫重量: $Wb_3 = Wr_2 + Ws_2 = 0.00 + 0.12$

シルト、粘土重量: $Wc_3 = Wa_1 + Wc_2 = 10.80 + 7.54$

砂・礫容積: $Vb_3 = Vr_2 + Vs_2 = 0.00 + 0.05$ = 0.05 (m³/本)

シルト、粘土容積: $Vc_3 = Va_1 + Vc_2 = 4.13 + 2.88$ = 7.01 ($m^3/$ 本)

土粒子重量: $Wa_3 = Wb_3 + Wc_3 = 0.12 + 18.34$

水分重量 : $Ww_3 = Ww_1 + Ww_2 = 40.34 + 4.55$

重 量: $W_3 = Wa_3 + Ww_3 = 18.46 + 44.89$

土粒子容積: $Va_3 = Vb_3 + Vc_3 = 0.05 + 7.01$

水分容積 : Vw₃ = Vw₁ + Vw₂ = 40.34 + 4.55

容 積: V₃ = Va₃ + Vw₃ = 7.06 + 44.89

液 比 重: $_3 = \frac{W_3}{V_3} = \frac{63.35}{51.95}$

重量濃度 : $C_3 = \frac{Wa_3}{W_3} \times 100 = \frac{18.46}{63.35} \times 100$

= 18.46 (t/本)

0.12 (t/本)

18.34 (t/本)

= 44.89 (t/本)

= 63.35 (t/本)

= 7.06 (m³/本)

= 44.89 (m³/本)

= 51.95 (m³/本)

= 1.219

= 29.14 (Wt%)

CSD

5. 一次分離

礫、砂の回収率は 100%とし、シルトおよび粘土の回収量は一次処理される礫については 10(Wt%)、砂については 40(Wt%)の泥水 (排泥水中の礫及び砂を除いた付着泥水) を含むものとする。

礫 重 量:
$$Wr_4 = Wr_2 = 0.00$$

砂 重 量:
$$Ws_4 = Ws_2 = 0.12$$

シルト、粘土質量:
$$Wc_4 = (Wr_4 \times 0.1 + Ws_4 \times 0.4) \times \frac{Wa_3 - (Wr_4 + Ws_4)}{Ww_3 + \{Wa_3 - (Wr_4 + Ws_4)\}}$$

=
$$(0.00 \times 0.1 + 0.12 \times 0.4) \times \frac{18.46 - (0.00 + 0.12)}{44.89 + \{18.46 - (0.00 + 0.12)\}}$$

礫 容 積:
$$Vr_4 = \frac{Wr_4}{Gs} = \frac{0.00}{2.617}$$

$$=$$
 0.00 (m 3 /本)

砂 容 積:
$$Vs_4 = \frac{Ws_4}{Gs} = \frac{0.12}{2.617}$$

$$= 0.05 \, (m^3/4)$$

シルト、粘土容積:
$$Vc_4 = \frac{Wc_4}{Gs} = \frac{0.01}{2.617}$$

$$= 0.00 \, (m^3/4)$$

土粒子重量:
$$Wa_4 = Wr_4 + Ws_4 + Wc_4 = 0.00 + 0.12 + 0.01$$

水分重量 :
$$Ww_4 = (Wr_4 \times 0.1 + Ws_4 \times 0.4) - Wc_4 = (0.00 \times 0.1 + 0.12 \times 0.4) - 0.01$$

= 0.04 (t/本)

重 量:
$$W_4 = Wa_4 + Ww_4 = 0.13 + 0.04$$

土粒子容積:
$$Va_4 = Vr_4 + Vs_4 + Vc_4 = 0.00 + 0.05 + 0.00$$

水分容積 :
$$Vw_4 = \frac{Ww_4}{0} = \frac{0.04}{1.000}$$

$$= 0.04 (m^3/本)$$

容 積:
$$V_4 = Va_4 + Vw_4 = 0.05 + 0.04$$

$$= 0.09 (m^3/本)$$

含 水 比:
$$_{4} = \frac{WW_{4}}{Wa_{4}} \times 100 = \frac{0.04}{0.13} \times 100$$

6. サイクロンオーバー泥水

土粒子重量: $Wa_5 = Wa_3 - Wa_4 = 18.46 - 0.13$

重 量: $W_5 = Wa_5 + Ww_5 = 18.33 + 44.85$ = 63.18 (t/本)

土粒子容積: $Va_5 = \frac{Wa_5}{GS} = \frac{18.33}{2.617}$

= 7.00 (m³/ \pm)

= 44.85 (m³/本)

容 積: $V_5 = Va_5 + Vw_5 = 7.00 + 44.85$ = 51.85 (m³/本)

液 比 重: $_{5} = \frac{W_{5}}{V_{5}} = \frac{63.18}{51.85}$ = 1.219

重量濃度 : $C_5 = \frac{Wa_5}{W_5} \times 100 = \frac{18.33}{63.18} \times 100$

= 29.01 (Wt%)

CSD

7. 調整槽内比重

調整槽容量は、必要貯留泥水量 (V₀ = 10 分 × 送泥流量 × 1.5) を貯留できる容量とする。 比重調整後の調整槽内の土粒子及び水分の重量は、

土粒子重量 :
$$Wac_1 = V_0 \times {}_1 \times C_1 / 100 = 16.47 \times 1.15 \times 21.11 / 100 = 4.00 (t)$$

水分重量 :
$$Wwc_1 = V_0 \times I_1 \times (100 - C_1) / 100$$

$$= 16.47 \times 1.15 \times (100 - 21.11) / 100$$

$$=$$
 14.94 (t)

となる。

ここで、調整槽内比重を上記の比重調整後の調整槽内泥水にオーバー泥水と送泥水の差 [(「サイクロンオーバー泥水」-「送泥水」) /]を加えたものの比重とし、それに対して比重調整を行うこととする。

2.700

土粒子重量 :
$$Wac_2 = Wac_1 + \frac{(Wa_5 - Wa_1)}{2.700} = 4.00 + \frac{(18.33 - 10.80)}{2.700}$$

6.79 (t)

水分重量 :
$$Wwc_2 = Wwc_1 + \frac{(Ww_5 - Ww_1)}{2.700} = 14.94 + \frac{(44.85 - 40.34)}{2.700}$$

: 16.61 (t)

重 量:
$$Wc = Wac_2 + Wwc_2 = 6.79 + 16.61$$

= 23.40 (t)

土粒子容積 :
$$Vac_2 = \frac{Wac_2}{Gs} = \frac{6.79}{2.617}$$

= 2.59 (m³)

水分容積 :
$$Vwc_2 = \frac{Wwc_2}{0} = \frac{16.61}{1.000}$$

= 16.61 (m^3)

容 積:
$$Vc = Vac_2 + Vwc_2 = 2.59 + 16.61$$

 $19.20 \, (m^3)$

液 比 重 :
$$c = \frac{Wc}{Vc} = \frac{23.40}{19.20}$$

= 1.219

重量濃度 :
$$Cc = \frac{Wac_2}{Wc} \times 100 = \frac{6.79}{23.40} \times 100$$

= 29.02 (Wt%)

比重調整を行うに際しては、下記の条件を用いる。

- (a) 比重調整後の容量は、貯留泥水容量(V₀)とする。
- (b) 比重調整後の比重は、送泥水比重(1)とする。
- (c) 比重調整泥水は、比重濃度(C₉) = 50(Wt%)とする。

したがって、比重調整泥水の比重(ց)は、

$$_{9} = \frac{(2 \times Gs)}{(Gs + 1)} = \frac{(2 \times 2.617)}{(2.617 + 1)}$$

= 1.447

となる

以下に示す各ケースに分類して、比重調整を行うこととする。

		$V_1 < V_5$	$V_1 = V_5$	$V_1 > V_5$
1 <	С	Case1	Case4	Case7
1 =	С	Case2	Case5	Case8
1 >	С	Case3	Case6	Case9

ここで、

V1: 送泥流量44.47 (m³/本)V5: オーバー泥水51.85 (m³/本)1: 送泥水比重1.150C: 調整槽内比重1.219

以上、V₁ < V₅、 1 < cより Case 1 を採用

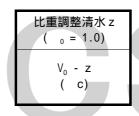
Case 1

調整槽内比重(c)が送泥水比重($_1$)より重いため清水による比重調整を行う。ここで、引き抜き泥水量及び比重調整清水量をzとすると、

$$(V_0 - z) \times C + z \times_0 = V_0 \times_1$$

 $z = (_1 - C) \times V_0 / (_0 - C)$
 $= (1.150 - 1.219) \times 16.47 / (1.000 - 1.219)$
 $= 5.19 (m^3)$

ここで、


 V₀:容積
 16.47 (m³)

 0:清水比重
 1.000

 1:送泥水比重
 1.150

 c:調整槽内比重
 1.219

引抜泥水 : a' = z = 5.19 (m³) 余剰泥水 : b' = V₅ - V₁ = 7.38 (m³) 比重調整泥水: c' = 0.00 (m³) 比重調整清水: d' = z = 5.19 (m³)

z | 引抜泥水(c)

ここで、各水量を1本当りに水量に換算する。

引抜泥水 : a = a' × = 5.19 × 2.700

余剰泥水 : b = b' = 7.38

= 7.38 (m³/本) 比重調整泥水: c = c' × = 0.00 × 2.700

= 0.00 (m³/本) 比重調整清水: d = d' × = 5.19 × 2.700

= 14.01 (m^3/Δ)

14.01 (m³/本)

8. 引抜泥水

重

土粒子重量: $Wa_7 = Va_7 \times Gs = 1.89 \times 2.617$

水分重量 : $Ww_7 = Vw_7 = 12.12$ 12.12 (t/本)

量: $W_7 = Wa_7 + Ww_7 = 4.95 + 12.12$ 17.07 (t/本)

土粒子容積: $Va_7 = a \times c \times Cc / Gs / 100$ $= 14.01 \times 1.219 \times 29.02 / 2.617 / 100$

1.89 (m³/本)

4.95 (t/本)

水分容積 : Vw₇ = a - Va₇ = 14.01 - 1.89 12.12 (m³/本) =

容 積: $V_7 = Va_7 + Vw_7 = 1.89 + 12.12$ 14.01 (m³/本)

9. 余剰泥水

土粒子重量: $Wa_8 = Va_8 \times Gs = 1.00 \times 2.617$ 2.62 (t/本)

水分重量 : $WW_8 = VW_8 = 6.38$ 6.38 (t/本)

量: $W_8 = Wa_8 + Ww_8 = 2.62 + 6.38$ 9.00 (t/本)

土粒子容積: Va₈ = b x c x Cc / Gs / 100 $= 7.38 \times 1.219 \times 29.02 / 2.617 / 100$

1.00 (m³/本)

水分容積 : Vw₈ = b - Va₈ = 7.38 - 1.00 6.38 (m³/本)

容 積: $V_8 = Va_8 + Vw_8 = 1.00 + 6.38$ 7.38 (m³/本)

10. 比重調整泥水

容

土粒子重量: $Wa_9 = Va_9 \times Gs = 0.00 \times 2.617$ 0.00 (t/本) =

水分重量 : $Ww_9 = Vw_9 = 0.00$ 0.00 (t/本)

量: $W_9 = Wa_9 + Ww_9 = 0.00 + 0.00$ 0.00 (t/本)

土粒子容積: $Va_9 = c \times g \times C_9 / Gs / 100$

 $= 0.00 \times 1.447 \times 50.00 / 2.617 / 100$ 0.00 (m³/本)

水分容積 : Vw₉ = c - Va₉ = 0.00 - 0.00 0.00 (m³/本)

0.00 (m³/本)

積: $V_9 = Va_9 + Vw_9 = 0.00 + 0.00$

11. 比重調整清水

12. 処理泥水

水分重量 :
$$Ww_{11} = Ww_7 + Ww_8 = 12.12 + 6.38$$
 = 18.50 (t/本)

重 量:
$$W_{11} = Wa_{11} + Ww_{11} = 7.57 + 18.50$$

水分容積 :
$$Vw_{11} = Vw_7 + Vw_8 = 12.12 + 6.38$$
 = 18.50 (m³/本)

容 積:
$$V_{11} = Va_{11} + Vw_{11} = 2.89 + 18.50$$
 = 21.39 (m³/本)

液 比 重:
$$\frac{W_{11}}{V_{11}} = \frac{26.07}{21.39}$$

重量濃度 :
$$C_{11} = \frac{Wa_{11}}{W_{11}} \times 100 = \frac{7.57}{26.07} \times 100$$

1.219

14.01 (t/本)

7.57 (t/本)

2.89 (m³/本)

13. 脱水ケーキ

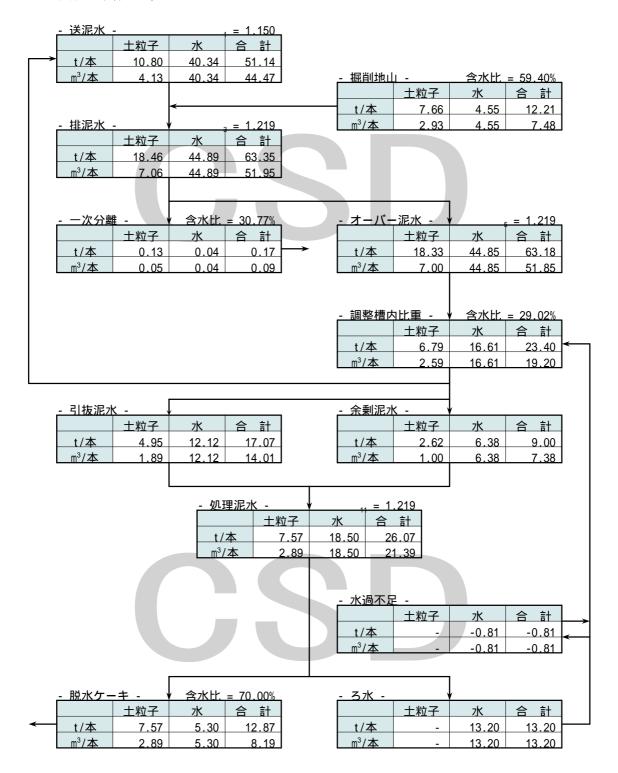
含水比を X = 70.00(%)とし、処理泥水中の粒子は全て脱水ケ - キとして搬出されるものとする。 土粒子重量: Wa₁₂ = Wa₁₁ = 7.57

水分重量 :
$$Ww_{12} = Wa_{11} \times \frac{X}{100} = 7.57 \times \frac{70.00}{100}$$

量: $W_{12} = Wa_{12} + Ww_{12} = 7.57 + 5.30$

水分容積 :
$$Vw_{12} = Ww_{12} = 5.30$$
 = 2.89 (m³/本) = 5.30 (m³/本)

容 積:
$$V_{12} = Va_{12} + Vw_{12} = 2.89 + 5.30$$
 = 8.19 (m³/本)


14. 3 水

重 量:
$$W_{13} = Ww_{11} - Ww_{12} = 18.50 - 5.30$$
 = 13.20 (t/本)

15. 水過不足

重 量:
$$W_{14} = W_{13} - W_{9} - W_{10} = 13.20 - 0.00 - 14.01$$

16. パランスシート

17. 一次処理機

一次処理機の規格は排泥流量 $[V_3]$ と一次分離砂礫量(処理乾砂量) $[Wa_4]$ とにより決定する。排泥流量に対し、

$$V_3 \times \frac{S}{Lp} = 51.95 \times \frac{0.060}{2.430}$$

= 1.28 (m³/min)

一次分離砂礫量に対し、

$$Wa_4 \times \frac{S \times 60}{Lp} = 0.13 \times \frac{0.060 \times 60}{2.430}$$

0.19 (t/hr)

S:掘進速度

Lp:推進管長

0.060 (m/min) 2.430 (m)

処理水量(m³/min)	出力(kW)	質量(t)	処理乾砂量(t/h)
2.0	33.0	8.7	30
4.0	69.0	11.6	40

処理水量 = 2.0 (m³/min),処理乾砂量 = 30 (t/h) とする。

18. 二次処理機

二次処理機の規格は脱水ケーキ量[V12]により決定する。

$$V_{12} = 8.19 \, (m^3/4)$$

最小必要容量は、

$$V_{12} \times \frac{Cm \times n}{60 \times t} = 8.19 \times \frac{60 \times 2.10}{60 \times 8}$$

 $= 2.15 \, (m^3/\square)$

Cm: 脱水1回当りのサイクルタイム

60 (分/回)

n : 1 日当り施工本数 = $\frac{日進量(m/日)}{推進管長(m/本)} = \frac{5.10}{2.430}$

2.10 (本/日)

t :1日当り作業時間

8 (hr/日)

脱水ケーキ量(m³)	ろ室数(室)	ろ過面積(m²)	出力(kW)	質量(t)
1.1	60	70	24.0	13.5
1.7	90	100	24.0	17.5
2.2	90	135	25.0	20.0
3.3	90	200	25.0	27.2

二次処理機 2.2 (m³) とする。

脱水回数 =
$$\frac{1$$
日当り脱水容量 $\frac{V_{12} \times n}{\text{機械容量}} = \frac{8.19 \times 2.10}{2.2}$ (回)

= 7.82 (回)

運転時間 =
$$\frac{$$
 脱水回数 × Cm}{60} = $\frac{7.82 \times 60}{60}$ (hr)

= 7.82 (hr)

- 注 1. 脱水 1 回当りのサイクルタイム(Cm)は 60min を標準とするが、土質条件により +30min の範囲で増加できる。
 - 2.フィルタプレスの容量を増すか、または台数を増すかは経済比較による。

19. 調整槽

調整槽容量は、10分間に流れる送泥量の1.5倍[V。]を満足するものとし、

$$V_0 = 16.47 \, (m^3)$$

容	量(m³)	出	力(kW)	質	量(t)
	10		2.2		2.0
	15		3.7		2.5
	20		5.5		3.2
	25		5.5		3.6

容量 = 20 (m³), 出力 = 5.5 (kW) とする。

20. 余剰泥水槽

余剰泥水槽容量は、処理泥水量 $[V_{11}]$ を満足するもので、かつ二次処理機 1回当りの機械容量に対する処理泥水量を満足するものとする。

- (1) 処理泥水量(V₁₁) = 21.39 (m³)
- (2) 1回当り処理泥水量 = 機械容量 × $\frac{V_{11}}{V_{12}}$ = 2.2 × $\frac{21.39}{8.19}$ = 5.75 (m³)

容	量(m³)	出	力(kW)	質	量(t)
	10		2.2		2.0
	15		3.7		2.5
	20		5.5		3.2
	25		5.5		3.6

容量 = 25 (m³), 出力 = 5.5 (kW) とする。

21. スラリ槽

スラリ槽容量は、余剰泥水槽と同様とする。

22. ろ 水 槽

ろ水槽容量は、二次処理機より発生する水量[V13]を満足するものとし、

$$V_{13} = 13.20 \, (m^3)$$

容	量(m³)	質	量(t)
	10		2.3
	15		2.5
	20		3.0
	25		3.3

容量 = 15 (m³)とする。

23. 清水槽

清水槽容量は、比重調整用清水投入量[٧10]を満足するものとし、

$$V_{10} = 14.01 \, (m^3/4)$$

		_	
容	量(m³)	質	量(t)
	10		2.3
	15		2.5
	20		3.0
	25		3.3

容量 = 15 (m³)とする。

24. 粘 土 槽

粘土槽容量は、比重調整用泥水投入量[٧,]を満足するものとする。

$$V_9 = 0.00 \, (m^3/4)$$

容	量(m³)	出	力(kW)	質	量(t)
	3		4.0		1.05
	5		8.0		1.45

V₉ = 0.00 (m³/本)のため不要。

25. CMC 槽・PAC 槽

CMC 槽容量は、V = 3m³を標準とする。

PAC 槽容量は、 $V = 6m^3 (ポリエチレン製) を標準とする。$

容	量(m³)	出	力(kW)	質	量(t)
	3		2.0		0.7

26. アルカリ中和装置

水過不足計算において[$+V_{14}$]となった場合に計上し、アルカリ中和装置の規格は $6m^3/hr$ を標準とする。

運転時間 =
$$\frac{V_{14} \times n}{6}$$
 = $\frac{-0.81 \times 2.10}{6}$ = -0.28 (hr)

ここで、n:1 日当り施工本数 = $\frac{\text{日進量(m/H)}}{\text{推進管長(m/本)}} = \frac{5.10}{2.430} = 2.10$ (本/日)

処理量(m³/h)	質	量(t)
6		0.55

V₁₄ < 0.00 (m³/本)のため不要。

27. 土砂ホッパー

土砂量は一次分離機で回収された砂礫 (V_4) 及び脱水ケーキ (V_{12}) の合計量である。最小必要容量は、

土砂量 =
$$(V_4 + V_{12}) \times n = (0.09 + 8.19) \times 2.10$$

$$=$$
 17.39 (m³)

n : 1日当り施工本数 = 日進量(m/日)
推進管長(m/本) =
$$\frac{5.10}{2.430}$$
 = 2.10 (本/日)

以上により、一日当りの土砂量で算出するが、搬出条件を考慮し、必要容量を決定する。

容	量(m³)	質	量(t)
	10		5.5
	20	6	9.0
	30		13.5

容量 = 20 (m³)とする。

28. 補給作泥(材)量の算出

上記重量は乾砂重量であり、掘削粘土を用いる場合は次により含水比を考慮すること。

・掘削粘土重量 Wn

$$Wn = \frac{Wa_9}{n \times (1 - Gsn / 100)}$$
$$= \frac{0.00}{1.6 \times (1 - 40 / 100)} = 0.00 (t/\$)$$

・掘削粘土容積 Vn

$$Vn = \frac{Wn}{n} = \frac{0.00}{1.6} = 0.00 \text{ (m}^3/\text{Å})$$

n :粘土の見掛け比重 Gsn :粘土の含水比

1.6

2) CMC =
$$\{V_9 + V_{10}\}$$
 × 1Kg × $\frac{L}{Lp}$
= $\{0.00 + 14.01\}$ × 1 × $\frac{100.00}{2.430}$ = 576.54 (kg)
V₉:比重調整用泥水量 0.00 (m³/本)

 V₁₀:比重調整用清水量
 14.01 (m³/本)

3) PAC =
$$Wa_{12} \times 20 \text{kg} \times \frac{L}{Lp}$$

= 7.57 × 20 × $\frac{100.00}{2.430}$ = 6230.45 (kg)

Wa₁₂:土粒子重量 L:推進延長 7.57 (t/本) 100.00 (m) PAC 添加量は 20.0kg/t を標準とするが施工条件の他、過去の実績を考慮して増減できる。

4)水 =
$$V_{14}$$
 × $\frac{L}{Lp}$ = -0.81 × $\frac{100.00}{2.430}$ = -33.33 (t) V_{14} :水過不足容積 -0.81 (m³/本)

注 収支計算において √¼ がマイナス (不足)となった場合に計上する。

5)アルカリ中和剤

(炭酸ガス) =
$$V_{14} \times 0.44 \text{kg} \times \frac{L}{\text{Lp}}$$

= -0.81 × 0.44 × $\frac{100.00}{2.430}$ = -14.67 (kg)
 V_{14} :水過不足容積 -0.81 (m³/本)

注 収支計算において √14 がプラス (余剰)となった場合に計上する。

6)補充作泥(材)量一覧

・粘土	0.00	(t)
掘削粘土重量	0.00	(t/本)
掘削粘土容積	0.00	(m³/本)
• CMC	576.54	(kg)
• PAC	6230.45	(kg)
・水	33.33	(t)
・アルカリ中和剤		
炭酸ガス		(kg)

注 収支計算において √14 がマイナスとなったので、アルカリ中和剤は計上しない。

GSD

物資収支計算

物質収支計算

泥水輸送設備計画

1. 計画条件

1) 呼び径: 2) 掘進機外径:	B _s	1650 1.980	(m)
3) 推進延長:	L	100.000	` '
4) 立坑の深さ	H'	7.500	` '
5) 立坑から調整槽までの距離:	I_1	20.000	(m)
6) 立坑から処理機までの距離:	12	20.000	(m)
7) 処理吐出高さ(+GL):	h	5.000	(m)
8) 掘進速度:	S	60.000	(mm/min)
9) 切羽水圧:	P_w	120.000	(kN/m^2)
10) 送泥管(内径):	d_1	0.1552	(m)
11) 排泥管(内径):	d_2	0.1552	(m)
12) 送泥流体仕様			
a. 固形物真比重:	s	2.617	
b. 送泥水比重:	1	1.150	
c. 母液比重:	0	1.000	
13) 地山の仕様			
a. 粒度構成			
礫:	S_1	0.00	(%)
砂:	S_2	1.54	(%)
シルト、粘土:	S_3	98.46	(%)
b. 含水比:	W	59.40	(%)
c. 土粒子の真比重:	G_s	2.617	
14) 重力加速度:	g	9.8	(m/sec^2)
15) 電動機の電源:	:	200V - 50Hz	<u> </u>

2. 送排泥流量の検討

(1) 地山の取込量

掘削断面積:A (m²)

$$A = \frac{1}{4} \times B_s^2$$

$$= \frac{1}{4} \times 1.980^2 = 3.079 \text{ (m}^2\text{)}$$

地山の含泥率: K (vol%)

$$K = \frac{1}{1 + e} = \frac{1/\{1 - \frac{1}{1 + w/100} \times (1 - \frac{w}{Gs})\} - 1}{\frac{Gs}{w} - 1} \times 100$$

$$= \frac{1/\{1 - \frac{1}{1 + 59.40/100} \times (1 - \frac{1.000}{2.617})\} - 1}{\frac{2.617}{1.000} - 1} \times 100 = 39.15 \text{ (vol%)}$$

掘削土量(真体積):q (m³/min)

q =
$$A \times \frac{S}{1000}$$

= $3.079 \times \frac{60.000}{1000}$ = 0.185 (m³/min)

掘削土量中の乾砂量:G (m³/min)

$$G = q \times \frac{K}{100}$$
$$= 0.185 \times \frac{39.15}{100} = 0.072 \text{ (m}^3/\text{min)}$$

(2) 送排泥流量の決定

排泥管内断面積:a2 (m2)

$$a_2 = \frac{1}{4} \times d_2^2$$

= $\frac{1}{4} \times 0.1552^2 = 0.0189 \text{ (m}^2\text{)}$

管内限界沈殿流速: V_L (m/sec)

掘削土砂の流体輸送には、輸送土粒子が管内で沈殿しないように一定の管内流速を 確保する必要がある。

この管内流速を管内限界沈殿流速として「Durand の公式」で表わす。

$$V_L = F_L \times \sqrt{2 \times g \times d_2 \frac{Gs - 0}{0}}$$
 (Durand の公式)
= 1.345 × $\sqrt{2 \times 9.8 \times 0.1552 \times \frac{2.617 - 1.000}{1.000}} = 2.983$ (m/sec)

ここに、F_L: 粒径と濃度から決まる定数 1.345 (砂質土の場合 F_L=1.33~1.36) 排泥流量: Q₂ (m³/min)

$$Q_2 = a_2 \times V_L \times 60$$

= 0.0189 \times 2.983 \times 60 = 3.383 (m³/min)

送泥流量:Q₁ (m³/min)

$$Q_1 = Q_2 - q$$

= 3.383 - 0.185 = 3.198 (m³/min)

(3) 送泥濃度、排泥濃度の検討

送泥濃度: C₁ (vol%)

$$C_1 = \frac{\frac{1}{s} - \frac{0}{0} \times 100}{\frac{1.150 - 1.000}{2.617 - 1.000} \times 100 = 9.28 \text{ (vol\%)}$$

排泥濃度: C₂ (vol%)

$$C_2 = \frac{C_1 \times Q_1 + 100 \times G}{Q_2}$$

$$= \frac{9.28 \times 3.198 + 100 \times 0.072}{3.383} = 10.90 \text{ (vol\%)}$$

排泥比重: 2

$${}_{2} = {}_{0} + \frac{C_{2} \times (G_{s} - {}_{0})}{100}$$

$$= 1.000 + \frac{10.90 \times (2.617 - 1.000)}{100} = 1.176$$

3. 管径と管内流速の検討

(1) 送泥管

送泥管内断面積:a₁ (m²)

$$a_1 = \frac{1}{4} \times d_1^2$$

= $\frac{1}{4} \times 0.1552^2 = 0.0189 \text{ (m}^2)$

管内流速: V₁ (m/sec)

$$V_1 = \frac{Q_1}{a_1 \times 60}$$
$$= \frac{3.198}{0.0189 \times 60} = 2.820 \text{ (m/sec)}$$

(2) 排泥管

排泥管の管内流速: V2 (m/sec)

$$V_2 = V_L = 2.983 \text{ (m/sec)}$$

4. ポンプの特性検討

(1) 送泥ポンプの特性検討

送泥流量:Q₁ (m³/min) (掘削時)

 $Q_1 = 3.198 \, (m^3/min)$

送泥管 1 m 当りの抵抗損失: hf, (m 液柱/m) (ヘーゼン・ウイリアムス式)

$$\begin{aligned} & \mathsf{hf}_1 = \frac{98.9 \times \mathsf{V}_1^{\;2}}{\mathsf{C}^{1.85} \times \mathsf{d}_1^{\;1/6} \times \mathsf{V}_1^{\;0.15} \times \mathsf{d}_1 \times 2 \times 9.8} \times \\ & = \frac{98.9 \times 2.820^2}{120.000^{1.85} \times 0.1552^{1/6} \times 2.820^{0.15} \times 0.1552 \times 2 \times 9.8} \times 1.150 = 0.049 \; (m 液柱/m) \end{aligned}$$

送泥側ポンプ総揚程:TH₁ (m液柱)

$$TH_1 = (L + H' + I_1 + I_0) \times hf_1 - H' + \frac{10^{-1} \times P_w}{10^{-1} \times P_w}$$

=
$$(100.000 + 7.500 + 20.000 + 20.000) \times 0.049 - 7.500 + \frac{10^{-1} \times 120.000}{1.150} = 10.162$$
 (m)

ここに、 TH₁: 送泥側の総揚程

L : 推進延長 100.000 (m) H': 立坑の深さ 7.500 (m)l_o: バルブおよびエルボの相当直管長さ 20.000 (m) I₁:立坑から調整槽までの距離 20.000 (m) hf₁: 送泥管摩擦抵抗值 0.049 (m液柱/m) V₁: 送泥管内流速 2.820 (m/sec) d₁: 送泥管(内径) 0.1552 (m) P_w: 切羽水圧 120.000 (kN/m²)

1.150

(2) 送泥ポンプの選定

送泥管径	実揚程		電	勆機	回転数	ζ(rpm)	極数	駆動	台数
(mm)	(m)	型式	(kW)	(Hz)	50Hz	60Hz	Р	方式	(台)
	15	定速	11	50/60	1430	1710	4	直結	1
150.000	20	定速	15	50/60	1430	1710	4	直結	1
	25	定速	22	50/60	1430	1710	4	直結	1
	20	可変速	22	50/60	1350	1480	4	直結	1
	25	可変速	30	50/60	1350	1480	4	直結	1

TH₁ = 10.162 (m) より 15.0 (m) を採用する。

(3) 排泥ポンプの特性検討

排泥管 1 m 当りの抵抗損失: hf_2 (m 液柱/m) (ヘーゼン・ウイリアムス式)

$$\begin{split} & \mathsf{hf}_2 = \frac{98.9 \times \mathsf{V}_2^{\,2}}{\mathsf{C}^{1.85} \times \mathsf{d}_2^{\,1/6} \times \mathsf{V}_2^{\,0.15} \times \mathsf{d}_2 \times 2 \times 9.8} \times \\ & = \frac{98.9 \times 2.983^2}{120.000^{1.85} \times 0.1552^{1/6} \times 2.983^{0.15} \times 0.1552 \times 2 \times 9.8} \times 1.176 = 0.056 \; (m 液柱/m) \end{split}$$

排泥側ポンプ総揚程:TH2 (m液柱)

$$TH_2 = (L + H' + I_2 + h + I_0) \times hf_2 + H' + h - \frac{10^{-1} \times P_w}{2}$$

$$= (100.000 + 7.500 + 20.000 + 5.000 + 20.000) \times 0.056 + 7.500 + 5.000 - \frac{10^{-1} \times 120.000}{1.176} = 10.836 \text{ (m)}$$

ここに、 TH2: 排泥側の総揚程

L : 推進延長 100.000 (m) H': 立坑の深さ 7.500 (m)In: バルブおよびエルボの相当直管長さ 20.000 (m) I₂: 立坑から処理設備までの距離 20.000 (m) h : 処理吐出高さ(+GL) 5.000 (m)hf₂:排泥管摩擦抵抗值 0.056 (m液柱/m) V₂: 排泥管内流速 2.983 (m/sec) d₂:排泥管(内径) 0.1552 (m)P_w: 切羽水圧 $120.000 (kN/m^2)$

2: 排泥水比重 1.176

(4) 排泥ポンプの選定

排泥管径	実揚程	ポンプ	電車	動機	回転数	ζ(rpm)	極数	駆動	台数
(mm)	(m)	型式	(kW)	(Hz)	50Hz	60Hz	Р	方式	(台)
150.000	15	定速	11	50/60	1430	1710	4	直結	1
	20	定速	15	50/60	1430	1710	4	直結	1
	25	定速	22	50/60	1430	1710	4	直結	1
	20	可変速	22	50/60	1350	1480	4	直結	1
	25	可変速	30	50/60	1350	1480	4	直結	1

TH₂ = 10.836 (m) より 20.0 (m) を採用する。

(5) キャピテーションの検討

吸込管内損失

Hsf = -1.3×RNPSH +
$$\frac{\text{Hb - Hv}}{2}$$
 + $\frac{P_1}{2 \times 10.0}$ - $\frac{V_2^2}{2 \times g}$
= -1.3×2.941 + $\frac{10.300 - 0.240}{1.176}$ + $\frac{20.000}{1.176 \times 10.0}$ - $\frac{2.983^2}{2 \times 9.8}$
= 5.978 (m 液柱)

吸込可能距離

Ls =
$$\frac{\text{Hsf}}{\text{hf}_2}$$

= $\frac{5.978}{0.056}$
= 106.750 (m)

推進延長

L Ls により、泥水還流可能である。

ここに、Hsf : 吸込管内損失 (m液柱)

: 要求 NPSH = 8.1 x Q₂^{2/3} x N^{4/3} x 10⁻⁵ = 2.941 (m)
 Q₂ : 排泥流量 3.383 (m³/min)
 N : 排泥ポンプ回転数 1430 (rpm)
 Hb : 大気圧 10.300 (m 水柱)
 P₁ : 最小切羽水圧制御範囲 20.000 (kN/m²)
 2 : 排泥水比重 1.176 (kN/m²)

 V2: 排泥管内流速
 2.983 (m/sec)

 hf2: 排泥管摩擦抵抗值
 0.056 (m液柱/m)

 g: 重力加速度
 9.8 (m/sec²)

(6) ポンプ仕様の決定

以上の検討より、次表にポンプ仕様を示す。

ポンプ仕様

			パンフ 江水						
	項目	目 単位		排泥	送泥ポンプ				
				立坑内	中継ポンプ				
ポンプ形式			SPD2-150C	-	SPD2-150C				
濃		度	vol%	10	.90	9.28			
液	比	重		1.	1.176				
揚		量	m³/min	3.383		3.198			
揚		程	m	10.836		10.162			
ポン	プ実	揚程	m	20.000 -		15.000			
台		数	台	1	-	1			
電	動	機		定速	-	定速			
電		源		200-50					
回	転	数	rpm	1430	-	1430			
出		力	kW	15.0	-	11.0			
極		数	Р	4	-	4			
駆動方式		直結 -		直結					